Coronary Artery Disease Prediction Using Dna Microarrays, Neural Networks and Other Statistical Analysis Tools

نویسندگان

  • W. C. CHIN
  • C. K. THAM
چکیده

This paper aims to illustrate a novel approach of complex disease prediction, exemplified by a coronary artery disease (CAD) study that we have developed. This multidisciplinary approach straddles fields of microarray technology and genetics, neural networks (NN), data mining and machine learning, as well as traditional statistical analysis techniques, namely principal components analysis (PCA) and factor analysis (FA). A description of the biological background of the study is given, followed by a detailed description of how the problem has been modeled for analyses by neural networks and FA. A committee learning approach for NN have been used to improve generalisation rates. It has been shown that our NN approach was able to yield promising prediction results despite using only the most fundamental network structures. More interestingly, through the statistical analysis process, genes of similar biological functions have been clustered. In addition, a gene marker involved in breaking down lipids has been found to be the most correlated to CAD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Risk of Coronary Artery Disease from Dna Microarray-based Genotyping Using Neural Networks and Other Statistical Analysis Tool

This paper presents a novel approach for complex disease prediction that we have developed, exemplified by a study on risk of coronary artery disease (CAD). This multi-disciplinary approach straddles fields of microarray technology and genetics, neural networks (NN), data mining and machine learning, as well as traditional statistical analysis techniques, namely principal components analysis (P...

متن کامل

بررسی تأثیر پارامترهای پیوسته در تشخیص بیماری عروق کرونر قلبی با استفاده از شبکه‌های عصبی مصنوعی

Background & Aim: Coronary artery disease is among the common diseases in societies. The best method of assessing coronary artery diseases is through angiography. This study aimed at investigating the effect of disease parameters on the diagnosis of coronary artery disease using artificial neural networks. Methods: This analytic study included a database of 200 non-attributable records. In t...

متن کامل

Designing and evaluation of a decision support system for prediction of coronary artery disease

Introduction: Since human health is the issue of Medical Research, correct prediction of results is of a high importance. This study applies probabilistic neural network (PNN) for predicting coronary artery disease (CAD), because the PNN is stronger than other methods. Methods: In this descriptive-analytic study, The PNN method was implemented on 150 patients admitted to the Mazandaran Heart...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

Diagnosis of Coronary Artery Disease using Neuro-fuzzy-based Method

Background & Aim: Coronary artery disease is one of the most common diseases in different societies. Coronary angiography is established as one of the best methods for diagnosis of this disease. Angiography is an invasive and costly method. Furthermore, it is associated with risks such as death, heart attack, and stroke. Thus, this study introduces a neuro-fuzzy-based method which can help the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003